GUIDED WAVES AND SHM

Our Expertise
Ultrasonic inspection techniques and structural health monitoring (SHM) systems using guided waves for application on plate like structures, pipelines and fiber reinforced plastics

Our Services
- Modeling, simulation and experimental investigation of ultrasonic guided wave propagation for flaw detection
- Inspection techniques for flaw detection in extended components and structures (e.g. plates, pipelines)
- Design, development and qualification of structural health monitoring systems for safety relevant components
- Methods and systems for evaluation and monitoring of fiber reinforced plastics
- Adapted excitation and detection techniques for guided waves

Dr.-Ing. Jens Prager
jens.prager@bam.de

SHM with guided ultrasonic waves on hydrogen pressure vessels

RELIABILITY ASSESSMENT AND HUMAN FACTORS

Our Expertise
Holistic reliability assessment of non-destructive testing methods under systemic consideration of the influences of human factors

Our Services
- Consulting on the methods and criteria for the holistic reliability assessment
- Investigation of the influence of human factors on the reliability of NDT
- Human factors (HF) systems approach: HF as a function of interaction people, technology, group, organization and the organizational environment
- Empirical studies and hypotheses testing
- Human risk assessment (Human Failure Modes and Effects Analysis; HF-FMEA) and human reliability assessment
- Human-machine, human-automation, human-AI interaction
- Acceptance of new technologies (AI, Hydrogen)
- Usability testing and user-centred design (ISO 9241), eye tracking, design thinking

Dr. phil. Marija Bertovic
marija.bertovic@bam.de

Different factors influence the reliability of NDT

OUR EXPERTISE AND SERVICES

- Non-destructive testing (NDT) using ultrasonic and electromagnetic methods
- Design and development of optimized NDT procedures
- Research of advanced methods for material testing and characterization
- Simulation and modeling of inspection methods
- Visualization and reconstruction of test data for improved defect detection and evaluation
- Validation of NDT procedures and reliability
- Influence of human factors on NDT reliability
- Accredited testing laboratory in accordance with DIN EN ISO 17025
- Research and development
- Feasibility studies, surveys and advisory services
- NDT-service and procedures for special testing problems

Bundesanstalt für Materialforschung und -prüfung (BAM)
Unter den Eichen 87
12205 Berlin
Germany

Head of division: Dr.-Ing. Friedrich Bake
friedrich.bake@bam.de

Secretary
+49 30 8104-1849
+49 30 8104-71849
sekretariat-8.4@bam.de
www.bam.de

ACOUSTIC AND ELECTROMAGNETIC METHODS

Division 8.4

Sicherheit in Technik und Chemie
ULTRASONIC TESTING

Our Expertise
Ultrasonic testing and special techniques for volumetric non-destructive inspection of high-performance materials, complex geometries and composites

Our Services
- Theoretical and experimental examination of sound propagation
- Optimized inspection arrangements using linear and matrix array probes and in-house developed high performance multi channel devices
- Reconstruction methods for improved inspection reliability and flaw sizing
- Inspection and monitoring of components using different wave modes (e.g. plates, adhesive bonds, tubes)
- Optimized techniques for the inspection of inhomogeneous and anisotropic materials
- Development of probes and techniques for ultrasonic testing at high temperatures (< 1000 °C)

Dr.-Ing. Thomas Heckel
thomas.heckel@bam.de

AIR-COUPLED ULTRASOUND

Our Expertise
Air-coupled ultrasonic testing for materials with sensitive surfaces and for solid plates

Impact damage in CFRP components (top and side view: delamination, entrance and backwall echo)

SMPU-2 ultrasonic transducer for high-resolution ultrasonic testing in the frequency range up to 15 MHz

Our Services
- Inspection of CFRP, CFRP, sandwich structures, porous materials, paper, textile, concrete, food products
- Inspection of adhesive joints
- Development of transducers based on cellular polymers
- Development of novel thermoelectric acoustic transmitters and plasma-based sources
- Development of multi-channel devices for air-coupled testing
- Contact-free testing with guided waves
- Broadband laser-based acoustic sensors for frequencies up to 2 MHz

Dr.-Ing. Mate Gaal
mate.gaal@bam.de

IMMERSION TANK TESTING

Our Expertise
Mechanized high resolution ultrasonic immersion testing with a maximum of seven degrees of freedom for positioning of probe and specimen against each other

Ultrasonic transmission of a CFRP plate with in-house developed transducers based on cellular polypropylene

Our Services
- Frequency range of 1 MHz up to 100 MHz
- Application of focal and non-focal probes
- Testing of components with complex geometries
- Phased array probes with linear or matrix arrangement with up to 128 elements and frequencies up to 20 MHz can be applied
- Inspection results are displayed using A-, B-, C-scan or volume scan images
- Determination of directivity patterns according to EN 12668-2
- Determination of cleanliness of steel according to SEP 1927 and ASTM E588

Dipl.-Ing. Thomas Heckel
thomas.heckel@bam.de

ELECTROMAGNETIC TESTING

Our Expertise
Eddy current and magnetic flux leakage testing for the examination and testing of electrically conductive or ferromagnetic components

GMR sensor array for in-situ eddy current testing in additive manufacturing

Our Services
- Test method for the detection of near-surface inhomogeneities such as cracks, pores, inclusions, corrosion
- Development of optimized, problem-adapted eddy current and flux leakage probes
- Customized software for data acquisition, analysis and defect size determination
- Material characterization and identification (e.g. conductivity, ferrite content, layer thickness)
- Application and development of GMR sensors for the detection of micro-defects (magnetic microanalysis)

Dipl.-Ing. Ralf Casperson / Dr.-Ing. Matthias Pelkner
ralf.casperson@bam.de / matthias.pelkner@bam.de

High resolution 3D scan of a part of a hollow axle (indications are non metallic inclusions)