Polymer Characterization

Objective

Characterization of polymers, copolymers and nanoparticles with regard to size, molar mass, molar mass distribution and chemical heterogeneity (e.g. end group distribution, copolymer composition, topology) by two-dimensional coupling of various liquid chromatographic separation techniques respectively coupling of a specific separation technique with spectrometric or spectroscopic methods.

LC / MALDI-TOF-MS coupling (ESAirD®interface)

Copolymer composition (PEO-b-PPO) by coupling of LAC /MALDI ESAirD®-Electro/Airspray deposition interface

Two-dimensional chromatography

Coupling of interaction chromatography (LAC, LCCC, GELC) (1st dimension; separation regard to end groups) with size exclusion chromatography (2nd dimension; molar mass distribution of fractions)

MALDI-TOF-MS Imaging

Analysis of sample spots of MALDI-TOF mass spectrometry Investigation of segregation effects results in higher reproducibility of the method

Asymmetric Flow Field Flow fractionation (A4F)

Separation and identification of polymeric and metallic nanoparticles in order to identify them in organic matrices (water, food)

Diagram

- Two-dimensional coupling of various liquid chromatographic separation techniques
- Coupling of specific separation techniques with spectrometric or spectroscopic methods
- Analysis of sample spots of MALDI-TOF mass spectrometry
- Investigation of segregation effects results in higher reproducibility of the method
- Separation and identification of polymeric and metallic nanoparticles in organic matrices (water, food)