Production process and characterization of sensitized all elastomeric POF

Michaela Hohberg, Daniel Siebler, Philipp Rohwetter

BAM Federal Institute of Materials Research and Testing, Unter den Eichen 87, 12205 Berlin

Motivation

To fulfill the demanded properties for partial discharge detection application ¹ we developed the first fluorescent functionalized all-elastomeric POF²:

- Temperature stability up to 150°C
- High elasticity
- Transparent cladding
- High numerical aperture
- Dielectric constant close to ε = 2.73
- Control of the chemical composition of the core material
- Fiber length up to 1.8 m is possible
- The sample diameter is 2 mm (Fig. 2.)

Production process

- <u>Cladding</u>: The Thickness of 100-150 µm is set by tuning the viscosity and curing properties of the liquid twocomponent resin.
- <u>Cladding-core interface</u>: A high quality interface is formed driven by surface tension.
- <u>Core material</u>: For our proposes² a polysiloxane functionalized with a fluorescent dye is inserted and cured at elevated temperature, leading to a stable covalent linkage of core and cladding (Fig. 1.).

Optical quality and characteristics Depend on

POF

2015

- Intrinsic material attenuation, dust and remaining gas
- The boundary quality between core and cladding (Fig. 3.a):
- low roughness of R_a = 3.3 nm
- Spectral properties of the dye
 - Absorption spectra
 - Emission spectra
 - Reabsorption (Fig. 4 a-b)

The resulting fiber attenuation of the green fluorescent dye doped sample (Fig. 2.) is now

α = 5.1 dB m⁻¹ (Fig. 3.b)

Fig. 1. Process steps of all elastomeric POF production

Aging and temperature stability

A thermal aging test representative for testing cycles applied to high voltage cable accessories (Fig. 5.) has been conducted to a green fluorescent E-POF (Fig. 2.). An increase of optical loss about 1 dB m⁻¹ was obtained but may be tolerated on the application.

Fiber length extension by "chemical splicing"

Concatenation of fluorescent E-POF with lower attenuation transparent E-POF can extend the range in sensing applications. No significant reduction of mechanical strength is apparent.

Fig. 2. green fluorescent silicone step-index E-POF with an outer diameter of 2 mm

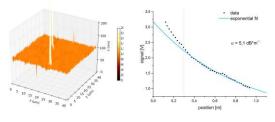


Fig. 3. a) atomic force microscope image of the cladding-core interfaceb) measurement of fiber attenuation of a green fluorescent E-POF (integral)

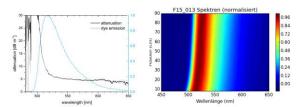
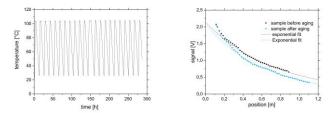



Fig. 4. The fluorescence of the core material

Bundesanstalt für Materialforschung und -prüfung

Fig.5. a) temperature profile of the aging programm; b) dataset and exponential fit of the optical attenuation measurement before and after aging **Fig.6.:** "Chemically spliced" E-POF consisting of fluorescent E-POF and transparent E-POF

allows to measure optical attenuation nondestructively corresponding to sideillumination fluorescence spectroscopy³ a) spectrally resolved attenuation measurement of the green fiber and the dye emission spectrum b) normalized detected spectra for different propagation lengths

Acknowledgement

www.bam.de

References

¹ D. Siebler, M. Hohberg, P. Rohwetter, R. Brusenbach, R. Plath, Elastomeric fluorescent POF for partial discharge detection – recent progress, *OFS-24*,

² D. Siebler, M. Hohberg, P. Rohwetter, Development of a fluorescent all-elastomeric POF and its potential sensor applications, *POF 2015*, **2015**, Nürnberg, Germany, accepted.

³ R. J. Kruhlak, M. G. Kuzyk, Side-illumination fluorescence spectroscopy. II. Applications to squarainedye-doped polymer optical fibers, *J. Opt. Soc. Am. B*1991, 16, 1756-1767. 2015, Curitiba, Brazil, accepted.

Sicherheit in Technik und Chemie